Assignment 4: Metal-semiconductor junctions

- 1. Show schematically a Schottky junction formation between a metal and p-type semiconductor. Sketch the energy band diagram under (a) equilibrium, (b) forward bias, and (c) reverse bias.
- 2. Consider a n-type Si sample with $10^{16} \ donors \ cm^{-3}$. The two ends of the sample are labeled B and C. The electron affinity of Si is 4.01 eV and the work function of four potential metals for contacts at B and C are listed in table below For Si, take $E_g = 1.10 \ eV$, $n_i = 10^{10} \ cm^{-3}$

Cs	Li	Al	Au
1.8	2.5	4.25	5.0

and $E_{Fi} = 0.55 \ eV$.

- (a) Ideally, which metals will result in a Schottky contact?
- (b) Ideally, which metals will result in an Ohmic contact?
- (c) Sketch the I-V characteristics when both B and C are Ohmic contacts.
- (d) Sketch the I-V characteristics when B is Ohmic and C is a Schottky junction.
- (e) Sketch the I-V characteristics when both B and C are Schottky contacts.
- 3. Consider a Schottky junction diode between W and n-Si, doped with $10^{16} \ donors \ cm^{-3}$. The cross-sectional area is 0.1 mm^2 . The electron affinity of Si is 4.01 eV and the work function of W is 4.55 eV. Take $N_c = 2.8 \times 10^{19} \ cm^{-3}$. Take $B_e = 110 \ Acm^{-2}K^{-2}$.
 - (a) What is the theoretical Schottky barrier height, ϕ_B , from the metal to the semiconductor?

- (b) What is the built-in voltage?
- (c) Calculate the reverse saturation current and the current when there is a forward bias of 0.2 V across the junction.
- (d) The experimental Schottky barrier is actually 0.66 eV due to dangling bonds and other surface defects. How does the answer to (c) change when using this value?
- 4. A PtSi Schottky diode at T = 300 K is fabricated on n-Si by doping of $N_D = 10^{16} cm^{-3}$. The barrier height is 0.89 V. Determine the value of the forward bias voltage when current density is 2 Acm^{-2} . Take $B_e = 110 Acm^{-2}K^{-2}$.
- 5. A Schottky diode is formed by depositing Au on n-type GaAs doped at $N_D = 5 \times 10^{16} \ cm^{-3}$. $T = 300 \ K$.
 - (a) Determine the contact potential.
 - (b) Determine the forward bias voltage to obtain a current density of $5 A cm^{-2}$.
 - (c) What is the change in forward bias voltage needed to double the current density?

GaAs parameters: $E_g = 1.43 \ eV$. Take $N_c = 4.7 \times 10^{17} \ cm^{-3}$, $N_v = 7 \times 10^{18} \ cm^{-3}$, $B_e = 45 \ Acm^{-2}K^{-2}$. Au parameters: Take $\phi_m = 5 \ eV$.